35 research outputs found

    The role of anterior cingulate cortex in the affective evaluation of conflict

    Get PDF
    An influential theory of anterior cingulate cortex (ACC) function argues that this brain region plays a crucial role in the affective evaluation of performance monitoring and control demands. Specifically, control-demanding processes such as response conflict are thought to be registered as aversive signals by ACC, which in turn triggers processing adjustments to support avoidance learning. In support of conflict being treated as an aversive event, recent behavioral studies demonstrated that incongruent (i.e., conflict inducing), relative to congruent, stimuli can speed up subsequent negative, relative to positive, affective picture processing. Here, we used fMRI to investigate directly whether ACC activity in response to negative versus positive pictures is modulated by preceding control demands, consisting of conflict and task-switching conditions. The results show that negative, relative to positive, pictures elicited higher ACC activation after congruent, relative to incongruent, trials, suggesting that ACC's response to negative (positive) pictures was indeed affectively primed by incongruent (congruent) trials. Interestingly, this pattern of results was observed on task repetitions but disappeared on task alternations. This study supports the proposal that conflict induces negative affect and is the first to show that this affective signal is reflected in ACC activation

    Affective modulation of cognitive control is determined by performance-contingency and mediated by ventromedial prefrontal and cingulate cortex

    Get PDF
    Cognitive control requires a fine balance between stability, the protection of an on-going task-set, and flexibility, the ability to update a task-set in line with changing contingencies. It is thought that emotional processing modulates this balance, but results have been equivocal regarding the direction of this modulation. Here, we tested the hypothesis that a crucial determinant of this modulation is whether affective stimuli represent performance-contingent or task-irrelevant signals. Combining functional magnetic resonance imaging with a conflict task-switching paradigm, we contrasted the effects of presenting negative- and positive-valence pictures on the stability/flexibility trade-off in humans, depending on whether picture presentation was contingent on behavioral performance. Both the behavioral and neural expressions of cognitive control were modulated by stimulus valence and performance contingency: in the performance-contingent condition, cognitive flexibility was enhanced following positive pictures, whereas in the nonperformance-contingent condition, positive stimuli promoted cognitive stability. The imaging data showed that, as anticipated, the stability/flexibility trade-off per se was reflected in differential recruitment of dorsolateral frontoparietal and striatal regions. In contrast, the affective modulation of stability/flexibility shifts was mirrored, unexpectedly, by neural responses in ventromedial prefrontal and posterior cingulate cortices, core nodes of the “default mode” network. Our results demonstrate that the affective modulation of cognitive control depends on the performance contingency of the affect-inducing stimuli, and they document medial default mode regions to mediate the flexibility-promoting effects of performance-contingent positive affect, thus extending recent work that recasts these regions as serving a key role in on-task control processes

    Comparing neural substrates of emotional vs. non-emotional conflict modulation by global control context

    Get PDF
    The efficiency with which the brain resolves conflict in information processing is determined by contextual factors that modulate internal control states, such as the recent (local) and longer-term (global) occurrence of conflict. Local “control context” effects can be observed in trial-by-trial adjustments to conflict (congruency sequence effects: less interference following incongruent trials), whereas global control context effects are reflected in adjustments to the frequency of conflict encountered over longer sequences of trials (“proportion congruent effects”: less interference when incongruent trials are frequent). Previous neuroimaging and lesion studies suggest that the modulation of conflict-control processes by local control context relies on partly dissociable neural circuits for cognitive (non-emotional) vs. emotional conflicts. By contrast, emotional and non-emotional conflict-control processes have not been contrasted with respect to their modulation by global control context. We addressed this aim in a functional magnetic resonance imaging (fMRI) study that varied the proportion of congruent trials in emotional vs. non-emotional conflict tasks across blocks. We observed domain-general conflict-related signals in the dorsal anterior cingulate cortex (dACC) and pre-supplementary motor area and, more importantly, task-domain also interacted with global control context effects: specifically, the dorsal striatum and anterior insula tracked control-modulated conflict effects exclusively in the emotional domain. These results suggest that, similar to the neural mechanisms of local control context effects, there are both overlapping as well as distinct neural substrates involved in the modulation of emotional and non-emotional conflict-control by global control context.This work was supported by NIMH grant 5R01MH087610 (Tobias Egner), a research position grant (FPU grant; AP2008-04006) (Maryem Torres-Quesada), and Spain's Ministerio de Ciencia y Tecnología (PSI2008-04223PSIC, PSI2012-34158, and CONSOLIDER-INGENIO2010 CS)

    Is value-based choice repetition susceptible to medial frontal transcranial direct current stimulation (tDCS)? A preregistered study.

    Get PDF
    Funder: Technische Universität Dresden (1019)In value-based decision making, people have to weigh different options based on their subjective value. This process, however, also is influenced by choice biases, such as choice repetition: in a series of choices, people are more likely to repeat their decision than to switch to a different choice. Previously, it was shown that transcranial direct current stimulation (tDCS) can affect such choice biases. We applied tDCS over the medial prefrontal cortex to investigate whether tDCS can alter choice repetition in value-based decision making. In a preregistered study, we applied anodal, cathodal, and sham tDCS stimulation to 52 participants. While we found robust choice repetition effects, we did not find support for an effect of tDCS stimulation. We discuss these findings within the larger scope of the tDCS literature and highlight the potential roles of interindividual variability and current density strength

    Repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex modulates value-based learning during sequential decision-making

    Get PDF
    Adaptive behavior in daily life often requires the ability to acquire and represent sequential contingencies between actions and the associated outcomes. Although accumulating evidence implicates the role of dorsolateral prefrontal cortex (dlPFC) in complex value-based learning and decision-making, direct evidence for involvements of this region in integrating information across sequential decision states is still scarce. Using a 3-stage deterministic Markov decision task, here we applied offline, inhibitory low-frequency 1-Hz repetitive transcranial magnetic stimulation (rTMS) over the left dlPFC in young male adults (n = 31, mean age = 23.8 years, SD = 2.5 years) in a within-subject cross-over design to study the roles of this region in influencing value-based sequential decision-making. In two separate sessions, each participant received 1-Hz rTMS stimulation either over the left dlPFC or over the vertex. The results showed that transiently inhibiting the left dlPFC impaired choice accuracy, particularly in situations in which the acquisition of sequential transitions between decision states and temporally lagged action-outcome contingencies played a greater role. Estimating parameters of a diffusion model from behavioral choices, we found that the diffusion drift rate, which reflects the efficiency of information integration, was attenuated by the stimulation. Moreover, the effects of rTMS interacted with session: individuals who could not efficiently integrate information across sequential states in the first session due to disrupted dlPFC function also could not catch up in performance during the second session with those individuals who could learn sequential transitions with intact dlPFC function in the first session. Taken together, our findings suggest that the left dlPFC is crucially involved in the acquisition of complex sequential relations and in the potential of such learning

    Transcranial Magnetic Stimulation Intensities in Cognitive Paradigms

    Get PDF
    BACKGROUND: Transcranial magnetic stimulation (TMS) has become an important experimental tool for exploring the brain's functional anatomy. As TMS interferes with neural activity, the hypothetical function of the stimulated area can thus be tested. One unresolved methodological issue in TMS experiments is the question of how to adequately calibrate stimulation intensities. The motor threshold (MT) is often taken as a reference for individually adapted stimulation intensities in TMS experiments, even if they do not involve the motor system. The aim of the present study was to evaluate whether it is reasonable to adjust stimulation intensities in each subject to the individual MT if prefrontal regions are stimulated prior to the performance of a cognitive paradigm. METHODS AND FINDINGS: Repetitive TMS (rTMS) was applied prior to a working memory task, either at the 'fixed' intensity of 40% maximum stimulator output (MSO), or individually adapted at 90% of the subject's MT. Stimulation was applied to a target region in the left posterior middle frontal gyrus (pMFG), as indicated by a functional magnetic resonance imaging (fMRI) localizer acquired beforehand, or to a control site (vertex). Results show that MT predicted the effect size after stimulating subjects with the fixed intensity (i.e., subjects with a low MT showed a greater behavioral effect). Nevertheless, the individual adaptation of intensities did not lead to stable effects. CONCLUSION: Therefore, we suggest assessing MT and account for it as a measure for general cortical TMS susceptibility, even if TMS is applied outside the motor domain

    Witnessing loss of consciousness during TMS – Syncope in contrast to seizure

    Get PDF
    Objective: Transient loss of consciousness (T-LOC) can occur during transcranial magnetic stimulation (TMS). T-LOC during TMS can be caused by syncope or seizure. TMS operators explicitly screen participants and are also able to witness clinical manifestations of T-LOC during stimulation. Therefore they have direct access to information necessary to tell the two etiologies apart, if they are well trained on the clinical differences and not only sensitive to the potential risk of seizure induction. We here present a typical case of vasovagal syncope during TMS to contrast its clinical manifestations to that of seizures. Method: We describe an event of T-LOC in a 21 year old healthy woman during single-pulse TMS. Screening, setting, clinical manifestations and advanced diagnostics are reported. Discussion: Based on the detailed description of the case, we discuss why syncope is the most parsimonious etiology for the clinical picture observed in this participant. We provide information on typical clinical features of seizure that were particularly not observed. We also address potential benefits of further diagnostic tools. Additionally, we go into more parameters that can be useful to distinguish syncope from seizure. Conclusion: TMS operators should be well aware of the differentiation of T-LOC in syncopal or ictal in etiology, because they witness T-LOC during TMS. By presenting a typical case of vasovagal syncope during TMS the report in hand provides necessary information and literature to do so. Keywords: TMS, Seizure, Syncope, Adverse-event, T-LOC, Case-repor
    corecore